

The fabrication of nanoscale devices featuring inorganic semiconductor nanowires and organic electronic and bioelectronic materials enables novel electronic applications such as biocompatible devices.

Competitive advantage

- Electron-beam lithography of polymer electrolytes and ionomers for electronics applications
- Deposition and nanoscale patterning of ultra-thin (< 50nm) parylene films for nanoscale device applications
- Fabrication of semiconductor nanowire devices
- Electrical characterisation of semiconductor nanowire devices

Impact

 Harnessing the advantages offered by nanoscale structures including power to size ratio and enhanced functionality and durability

More Information

Associate Professor Adam Micolich

School of Physics

T: +61 (0) 2 9385 6132 E: adam.micolich@unsw.edu.au

UNSW Knowledge Exchange knowledge.exchange@unsw.edu.au www.capabilities.unsw.edu.au +61(2) 9385 5008

Successful applications

- Development of nanowire transistors with gate-all-around structures with multiple independent gates and polymer insulators
- Nanoscale patterning of ion-conducting polymers for use as gate structures for nanowire transistors
- Nanoscale devices for ion-to-electron signal transduction
- High-performance p-GaAs MESFETs for nanowire CMOS
- Ultra-thin parylene films as patterned insulators in nanoscale devices
- Nanowire devices for bioelectronics applications

Capabilities and facilities

- Equipment for electrical measurements down to 1 Kelvin and magnetic fields up to 9 Tesla (with full-sphere rotation)
- Custom-built parylene deposition system for ultra-thin film deposition
- Electrical characterisation of devices under controlled atmosphere

Our partners

• Collaborations with numerous internationally respected teams