

Enabling the design and advanced manufacture of smart materials and devices using patented disruptive technologies that emulate the intrinsic mechanical gradients of natural tissues, like bones and trees.

Competitive advantage

- World-first patented technology to recursively weave textiles with mechanical gradients and patterns emulating nature's own
- Unique patent technology to engineer and manufacture composites comprising engineered textiles and smart matrix

Impact

- Addresses the current shortcomings of implantables including surgical meshes, stents and surgical reconstruction implants
- Enables novel drug delivery strategies for combination devices, dressings and implants

Successful outcomes

Preclinical testing underway for implants and wearables

Capabilities and facilities

Prototyping and tech innovation facility at partner start-up in NSW

Our partners

- TissuTex Pty. Ltd., NSW Australia
- · Food and Drug Administration, USA
- · National Institutes of Health, USA
- Cleveland Clinic, USA
- · Case Western Reserve University, USA
- · Stanford University School of Medicine and D School, USA
- · University of Lund, Sweden
- · Ludwig Maximilians University, Germany
- Christopher Columbus Foundation US Chamber of Commerce
- Wallace Coulter Foundation, USA
- AO Research and Development Institute, Switzerland

More Information

Inaugural Paul Trainor Chair, Professor Melissa L. Knothe Tate

Graduate School of Biomedical Engineering

T: +61 (0) 406 548 399 E: m.knothetate@unsw.edu.au

UNSW Knowledge Exchange knowledge.exchange@unsw.edu.au www.capabilities.unsw.edu.au

+61(2)93855008